Rotavirus is a genus of double-stranded RNA viruses in the family Reoviridae. Rotaviruses are the most common cause of diarrhoeal disease among infants and young children. Nearly every child in the world is infected with a rotavirus at least once by the age of five. Immunity develops with each infection, so subsequent infections are less severe; adults are rarely affected. There are nine species of the genus, referred to as A, B, C, D, E, F, G, H and I. Rotavirus A, the most common species, causes more than 90% of rotavirus infections in humans.

At least six of the twelve proteins encoded by the rotavirus genome bind RNA. The role of these proteins play in rotavirus replication is not entirely understood; their functions are thought to be related to RNA synthesis and packaging in the virion, mRNA transport to the site of genome replication, and mRNA translation and regulation of gene expression.

NSP3 is bound to viral mRNAs in infected cells and it is responsible for the shutdown of cellular protein synthesis. NSP3 inactivates two translation initiation factors essential for synthesis of proteins from host mRNA. First, NSP3 ejects poly(A)-binding protein (PABP) from the translation initiation factor eIF4F. PABP is required for efficient translation of transcripts with a 3' poly(A) tail, which is found on most host cell transcripts. Second, NSP3 inactivates eIF2 by stimulating its phosphorylation. Efficient translation of rotavirus mRNA, which lacks the 3' poly(A) tail, does not require either of these factors.

The eleven dsRNA strands remain within the protection of the two protein shells and the viral RNA-dependent RNA polymerase creates mRNA transcripts of the double-stranded viral genome. By remaining in the core, the viral RNA evades innate host immune responses including RNA interference that are triggered by the presence of double-stranded RNA.

Rotavirus A infections can occur throughout life: the first usually produces symptoms, but subsequent infections are typically mild or asymptomatic, as the immune system provides some protection. Consequently, symptomatic infection rates are highest in children under two years of age and decrease progressively towards 45 years of age. The most severe symptoms tend to occur in children six months to two years of age, the elderly, and those with immunodeficiency. Due to immunity acquired in childhood, most adults are not susceptible to rotavirus; gastroenteritis in adults usually has a cause other than rotavirus, but asymptomatic infections in adults may maintain the transmission of infection in the community. There is some evidence to suggest blood group secretor status and the predominant bacteria in the gut can impact on the susceptibility to infection by rotaviruses.

Diagnosis of infection with a rotavirus normally follows diagnosis of gastroenteritis as the cause of severe diarrhoea. Most children admitted to hospital with gastroenteritis are tested for rotavirus A. Specific diagnosis of infection with rotavirus A is made by finding the virus in the child's stool by enzyme immunoassay. There are several licensed test kits on the market which are sensitive, specific and detect all serotypes of rotavirus A. Other methods, such as electron microscopy and PCR (polymerase chain reaction), are used in research laboratories. Reverse transcription-polymerase chain reaction (RT-PCR) can detect and identify all species and serotypes of human rotaviruses.

Rotaviruses infect the young of many species of animals and they are a major cause of diarrhoea in wild and reared animals worldwide. As a pathogen of livestock, notably in young calves and piglets, rotaviruses cause economic loss to farmers because of costs of treatment associated with high morbidity and mortality rates. These rotaviruses are a potential reservoir for genetic exchange with human rotaviruses. There is evidence that animal rotaviruses can infect humans, either by direct transmission of the virus or by contributing one or several RNA segments to reassortants with human strains.